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ABSTRACT

Based on the time-domain first order correction to the physical

optics current approximation, a relationship between the phase factors

of the polarimetric scattering matrix elements and the principal

curvatures at the specular point of a scatterer is established.

The above phase-curvature relationship is tested by applying

it to theoretical as well as experimental backscattering data

obtained for a prolate spheroidal scatterer. The results of these

tests not only determine the acceptability of the phase-curvature

relationship, they also point out the range of kb values over which

the first order correction to the physical optics currents is valid,

and which serves as a compromise range between the high frequency

condition required by the curvature recovery model and the drawback

to lower frequencies required to prevent critical magnification of

measurement errors.

Another curvature recovery equation is derived by transforming

the linear polarization basis to the circular polarization basis.

The curvature recovery model is proven to satisfy the image reconstruction

identities of invariant transformation. A scattering ratio is defined

and its behavior is investigated at high frequencies. Its plots on the

complex plane provides a simple way to help judge the accuracy of

polarimetric scattering measurement, regardless of whether a linear or

a circular polarization basis is used.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

When a conducting object is illuminated by electromagnetic

radiation, in general, radiation is scattered in all directions

by the object. The problem of direct scattering is that of determining

the scattered field in all directions when the properties of the

incident field as well as those of the object are known. The problem

of far-field inverse scattering is defined as that of extracting

the geometrical properties and/or reconstructing the shape of the

scatterer under interrogation, given the incident field within the

neighborhood of the scatterer and the scattered far field. This problem

is fundamental to problems such as radar target classification,

discrimination and identification in remote sensing and surveillance

(Boerner, 1978, 1980).

It has been demonstrated that an electromagnetic scatterer

acts as a sensitive polarization transformer, depending on its profile.

Thus, depolarization effects must be taken into account in this

problem of vector nature. Sinclair (1948) introduced the scattering matrix

of a radar target for complete depolarization characterization. The

question then arises as to what geometrical properties of the surface

profile of the target may be ixtracted from the scattering matrix

of the target. A study of differential geometry reveals that for a

smooth, convex shape, there exists a pair of lines of principal

curvatures orthogonal to and intersecting with each other at any

specular point on the scatterer's surface. Since the principal
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curvatures at a point totally determine any other normal curvatures

at the same point, these two principal curvatures serve as a complete

curvature characterization at the specular point of the scatterer.

It will be shown in this thesis that if the polarization of the

incident magnetic field is in one of the directions of the principal

curvatures at the specular point of interest, then the cross-polarized

backscattered returns vanish. This kind of null polarizations generates

the idea that the principal curvatures are possibly related to the

non-zero co-polarized backscattered returns, and it also generated many

recent studies in radar polarimetry. This specific degeneracy of target

depolarization phenomenology provides the initial motivation for writing

this thesis.

1.2 Literature Review

Inverse techniques cover a vast amount of literature and they

have been developed in many otherwise diverse fields of physical

sciences where the characteristics of a medium are estimated from

experimental data, obtained from measurements made usually at a

distance from the medium, utilizing the laws th-t relate these

characteristics to the experimental data in a given situation. The

inverse problem of electromagnetic scattering has not been solved

in the general case. Stringent requirements are often needed to be

kept on the shapes of the scatterer to be recovered and on the

operating frequency range. Moreover, the existing solutions generally

demand an exhaustive amount of input information of as many aspects

and frequencies as possible. There are many approaches for obtaining

L lll. . .II - IIIII III1 1 I
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approximate solution to the electromagnetic inverse scattering problem.

The following only highlights the ramp response approach and other

specific approaches which have been proven successful and potentially

promising for future research, and which are directly relevant to this

thesis. An excellent and quite complete review of electromagnetic inverse

problems is given in Boerner [21].

Kennaugh, Cosgriff and Moffatt have introduced the use of the

impulse response in electromagnetic scattering problems [10,12]. Using

the physical optics approximation, it was shown that the impulse response

of a smooth conducting object is directly proportional to the second

derivative of the cross-sectional area of the scatterer. This remarkable

high frequency inverse scattering identity is known as the Kennaugh-Cosgriff

formula [10]. The area profile can thus be recovered from the ramp response,

since the ramp response is then directly proportional to the cross-sectional

area rather than its derivative (Kennaugh and Moffatt, 1965). Young [221

used the ramp response synthesized from complex scattering data at ten

harmonically related frequencies in the target's low resonance regime to

estimate the area function, from which a "likely image" of the target was

generated at three orthogonal look angles using his approximate limiting

surface technique. The images obtained are decent, but in general they are

not uniquely specified since more than one shape satisfies any three

look-angle area function set.

A more systematic approach was carried out by Das and Boerner, who

showed that the reconstruction of a smooth conducting target, convex in

shape, can be considered as a two-step process: (i) an electromagnetic

step of obtaining suitable radar measurables from which one can make

an estimation of a geometrical function of the conducting scatterer; and



(ii)a geometrical step of reconstructing the shape and size of the

object from the knowledge of the geometrical function estimated in

the first step. With the Radon transform concept, they showed that

the inverse three-dimensional Radon transform of the cross-sectional

area of a scatterer is simply the target's characteristic function,

which is a complete specification of shape. The area function can,

as in the previous approach, be estimated by the ramp response method

(Boerner, 1980). Thus, the electromagnetic inverse scattering problem can

be formulated as the classical Radon problem. Moreover, they also

indicated that the classical Radon problem is intimately related to

the problem of reconstruction from projections which has long been

investigated and applied in diverse fields, particularly in Computer-

Assisted Tomography. Thus, the many reconstruction techniques and

algorithms well developed in other fields can be applied in radar

target imaging as well.

A solution for the inverse scattering problem using the space-

time Integral equation was reported by Bennett et al [23]. The

technique developed was iterative and restricted to the class of

rotationally symmetric conducting targets. In this approach, the

Inverse problem is formulated as an inversion of the space-time

Integral equation. The shapes reconstructed are excellent for this

simple class of shapes, but no extension to more general shapes has

been made recently.

An important aspect of electromagnetic inverse scattering is

to incorporate the problem with utilization of polarization. A
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monostatic inverse scattering model based on polarization utilization

was developed by Chaudhur! and Boerner [2,17,24]. In brief, approximation

was made of high frequency scattered fields and an equivalent ellipsoidal

model was developed. The utilization of the space-time integral equation

and Minkowski's theory lead to a system of equations for the recovery

of the surface profile. The numerical technique is iterative, and when

the curvature difference at the specular point approaches to zero, the

recovery of that particular point is not possible; the system of the

recovery equations also becomes ill-conditioned even if the curvature

difference is small.

Based on the first order polarization correction to physical

optics [8], Ho graphically reconstructed the shape of a sphere-capped

cylinder with polarization correction incorporated into the Radon

transform approach [25,261. The results show that the quality of

images are significantly improved with polarization correction. It

must be noted here that Ho took advantage of the plane symmetry of

the sphere-capped cylinder, and reduced the Radon transform by one

dimension. In this class of objects, the two-dimensional inverse

transform of the area function normal to the equatorial plane gives

the width perpendicular to the plane. The width over this plane of

symmetry is actually a complete specification of the shape. Since

in the two-dimensional case, the Radon transform becomes the

projection, thus the filtered back projection algorithm was directly

borrowed from the theory of reconstruct~on from projections (Shepp

and Logan, 1974).

In this thesis, a high frequency inverse scattering model is



developed for the recovery of the specular point curvature from

polarimetric scattering data. Not only does the model show that the

specular geometry can be directly extracted from polarimetric

data, but it also contributes in viewing the electromagnetic

inverse scattering problem as one of reconstruction from

curvatures in differential geometry. In the introduction of the

next chapter, the main objective of this thesis will be clearly

specified.
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CHAPTER II

THE SPACE-TIME INTEGRAL EQUATION AND FIRSI ORDER CORRECTION

TO PHYSICAL OPTICS

2.1 Introduction

In recent years, due to advances made in radar technology, it

has become possible to measure the complete relative phase scatterinq

matrix of an object reliably [1,2,3]. Thus the utilization of these

polarimetric scattering data in radar target identification or

discrimination and in other inverse scattering applications has

become of considerable interest in current theoretical and experimental

research efforts [1-7]. The main objective of this thesis is to

investigate the information content of the scattering matrix [S], on

the shape, size, curvature, etc. of a scatterer, when it is given

for the monostatic case and in the high frequency region (i.e. the

wavelength of the interrogating signal is small compared to the

object characteristic dimension).

The scattering matrix [S], which manifests total polarization

information for a fixed frequency and a given aspect, is comprised

of four measurable complex elements (four magnitudes and four phases).

It will be shown here that the difference in suitable phase terms

in this matrix, under the high frequency interrogation conditions,

can lead to the recovery of the difference in principal curvatures

at the specular point, from a given general [S1 matrix. This procedure

avoids unitary transformations used in the pursuit of cross-polariza-

tion nulls required in certain radar target identification techniques

[3-5]. The underlying concept used to achieve the above results is

based on Bennett's first order far-field polarization correction [8,91



to the Kennaugh-Cosgriff's physical optics formula for the electro-

magnetic backscattered field [10,11].

In this chapter, the space-time integral equation, and how it

is used to obtain a first order correction to physical optics, is

discussed so that later, in Chapter III, its possible extension to

obtain higher order correction terms can be presented clearly. The

relationship between the principal curvatures and the general [S]

matrix is also developed in Chapter Ill. A discussion of numerical

verification with theoretical as well as measured data is given in

Chapter V.

2.2 The Space-Time Integral Equation

An electromagnetic wave incident on a perfectly conducting

body induces currents on the surface of the scatterer, which in turn

radiate and produce the scattered field. The current distribution

produces a vector potential given by

p(r ,t) f f d~ S
p s R

where d~r,t) is the induced surface current density at time t, r is

the position vector to the observation point, r' is that to an integra-

tion point, R - r' , T = t - R/c. The geometry is illustrated in

Figure 2.1.

The total magnetic field H is equal to the sum of the incident

field Hi and the scattered field H due to J,

-' =" ((,t + r t)
H(r,t) =Hi6,t) +

where Hs(r,t) V x Ap

5. p
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scattered
wjav e

x3

tn incident
wave

scatterer's
Xlsurface

Figure 2.1 Geometry for the Derivation of the

Space-Time Integral Equation

(Redrawn after Bennett, "Time Domain Solution Via

Integral Equations--- Surfaces and Composite Bodies"
July 1979)
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= ~T ( ,,)} x aR dS' [16J

The operator L is defined as I/R2 + (I/Rc))/3T, and aR is the unit

vector of R. An expression for J can be obtained by shrinking the

observation point to a point on the scatterer's surface under a

limiting procedure. For the case of a perfectly conducting scatterer,

the H-field boundary condition (J = an x H), with an being the unit

outward normal vector to the surface, can then be invoked to yield

a vector integral equation as shown in Bennett 123]

J(r,t) = 2an x H i(,t) + 2 7T .s an x {ilJ(r',T) x aR dS' (2.1)

The first term on the right-hand side of (2.1) is identiFied a, the

physical optics approximation and is also the source term, whereas

the second integral represents the contribution of retarded currents

at points on the scatterer's surface other than the observation point

P () i.e.

J(rt) = po(-r, t ) + J (-*, t)

with JE't) = --'' ffS an x {LJ(r',rT) X aR} dS' (2.2)
2wT

being the correction to the physical optics current .po" For the far

scattered magnetic field (AHs), with R - r, it can be shown that 1

= 1 T 1-1TS( fs r T x ar dS' (2.3)

where r is the radar range. Using (2.3), the physical optics approxi-

mation for the far scattered impulse response field was derived [8,23]

and Is equivalent to the Kennaugh-Cosgriff formula [10-12] which can

be written as



.....................
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r H r~t 
= I d 2

- = --- A(t)r s (po) 2 7 dt2  aHi (2.4)

where aHi is the unit vector in the direction of Hi, and A(t) is the

silhouette area of the scatterer as delineated by the incident impuls-

ive plane wavefront moving at half the free space veiocity, c.

Discussion here is restricted to the illuminated side of a smooth,

conducting, convex object.

Since the impulse response given in (2.4) depends solely on

the area function, it manifests no depolarization effects. Depolariza-

tion effects were taken care of by Bennett et al [8,9] in their first

order correction to physical optics approximation.

2.3 A First Order Correction to Physical Optics Using the Space-

Time Integral Equation [8]

To obtain an analytic expression for the first order correction

to the physical optics far field, the correction to the induced

surface current needs to be considered first. The integral in (2.2)

cannot be handled analytically without the knowledge of the geometry

of the scatterer. Yet the integration can be carried out over a

patch, S., around the specular point, assuming the patch being so

small that it is virtually flat. The contributions of retarded

currents outside the patch and effects such as creeping waves are

ignored to avoid the total surface integration. Under this "leading

edge" simplification, the first order correction obtained is valid

and accurate towards the high frequency end of the phasor frequency

response.

The expansion of the vector triple cross-product in (2.2)

yields the first order correction current
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pol 2 1 T LJo(r',r)[( n . aR)au - (an aU)aRJ dS'

+ f [LJv(-' 't)][(an R )av - (an aV)aRI dS'

where the primed quantities are associated with the integration point P'I(-l

and a up av are the unit vectors tangent to the principal curves at

the point of interest. The geometry information embedded in an. aR

can be extracted by expressing aR = (r - r')/R in a Taylor series

expansion as follows:

r - r = ru Au + r Av

- E (Au)2 + 2ruv (Au)(Av) + vv(Av) 21

1 [(Au) 3 + 3ru(Au)2 (Av) + 3rv(Au)(Av) 2

+ j[uu, ) 'uuv + -.uvv

+ r (txv) 31

vvv

ar

where rU = - etc. The above series describes any neighboring point
u u

(nu,Av) in the vicinity of r in terms of the derivatives of r at the

specular point. The geometry of the small patch is thus extrapolated

in terms of the properties of the surface at the specular point.

The scalar product of an and aR expressed by a series truncated

at second order (i.e. terms (Au)2 and (Av)2, etc.) introduces (E, F,

G) and (L, M, N), the coefficients of the first and second fundamen-

tal forms of the surface *(u,v) [13,14]. To simplify the algebra,

the principal curves are chosen as the parametric curves to represent

the curvilinear mapping r(u,v) for the surface of the patch, thus

... .. . .. . . i n, nml I I m I I - l i l - A d
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forcing F and M to zero [8,13,14]. The principal curvatures along

au and av at the specular point are obtained as [131

L

K L
u E

K 
N

v G'

respectively. Finally, LJu(u',T) and LJv(r',T) can be approximated

as Ju (r,t)/R 2 and Jv(r,t)/R 2 , respectively, by assuming that the

currents are spatially constant on a small, flat, circular patch

of radius eo. With the procedure outlined above the analytic expression

arrived at in [8] is

Ku - Kv
Jc(-C,t) = [auJu( ,t) - vv(0 (2.5)

The corresponding first order far-field impulse response correction

was obtained by assuming physical optics currents for J and J in
u v

the above equation and then substituting it into (2.3). A crucial

assumption made in [8] is that the patch radius c increases linearly
0

with time t, spreading from the specular point at the leading edge.

The final expression for the first order correction to the scattered

far field is

Ku Kv [ dA
roHs(pol)(r't) u H ui aVHvi dt (2.6)

where H u and H vi are the components of H. in the directions of a

and a v respectively.

It is clear that the first order correction exhibits

depolarization effects, which are proportional to the difference

in the principal curvatures at the specular point. Moreover, the
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first order correction takes the functional form of the first

derivative of the silhouette area function A(t), whereas the

physical optics far field, which exhibits no depolarization

effects, takes the functional form of the second derivative

of A(t). The practical aspects of using this first order

correction in geometry extraction (curvature difference at the

specular point in this case) are analyzed in the next chapter.
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CHAPTER III

CURVATURE RECOVERY FROM HIGH FREQUENCY [SI MATRIX ELEMENTS

3.1 Derivation of the Phase-Curvature Relationship

The polarimetric scattering data measured with a monostatic

radar system are given by

Sl $12 FS11fe J1l iS12 ej 12

IS] L 21 S 22 Is 2 1 ee
j ' 2 1  IS2 2 lej'22

The general polarization geometry with respect to the principal

directions at the specular point is shown in Figure 3.1. The elements

S | and S22 represent the backscattered signals when the transmitted

and the received polarizations are identical, i.e. a and a2,

respectively. On the other hand, $12 and $21 represent the cases

when the transmitted and the received polarizations are orthogonal

to each other (transmit-a1 , receive-a2 $21, etc.). In order to

relate the measurable [S] matrix to the theory presented in Chapter

II, the total physical optics scattered far field (i.e. the physical

optics and first order correction) is transformed from the time (t)

domain to the frequency (k, the wave number) domain by using

Fourier transformation. In the time domain, combining (2.4) and (2.6),

the total high frequency scattered far field is

o (-, t) _L !L2  Ku -Kv d
r Ait a~t 1 dA A(t)
s 2 7 dt2  Hi + dt

Ha H.* au) u - (al.' av) av] (31)
I I

The Fourier transform of (3.1), with the initial condition

AF(0) = (F.T.[A(t)1}k= = 0,

I k I II I IIIIO -
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al, a2 transmitting or

receiving basis
vectors

Figure 3.1 Specular Point Coordinate Systems
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yields

r 0 (7,k) 2 1 2A F (k) a

K K

+ (jk)A (k) u v a )a (aH a )a^ (3.2)
4 Tr H;' U U IH  • )

where AF(k) = F.T.[A(t)].

From the geometry in Figure 3.1, it is seen that

a=sina + cos a a and

(3.3)
= cos a a - sin a

Su V

For measuring S1 1 the transmitter polarization becomes a H a,, and

the receiver polarization becomes aHr V Thus, using (3.2), one

has

S a. (r)
11 Hr' 0 s

-- T-r (J k)2 2 F(k) ( 1  i

K .K
+ (jk)AF(k) u 4 7T [(a. a) (a a u

(aj" aV) a (3.4)

Similarly, for S2 2, ai ,V H a =2; for $21, aH  =a, a H a2;

and for S12' a = a2, ar a1. Now using (3.2), (3.3) and (3.4),

one gets (ignoring scale factors)

2 K -K
21  2AF F(k)(.s

$11 = (jk)A(k) - (jk)AF(k) -u cos 2c (3.5)
K -K

S22 = 2 (jk) + (jk)AF(k) U 4-i cos Z± (3.6)

K - K$ 21 -(j k) AF kW u. 4rv sin 2a (3.7)
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S21 =S 12 (reciprocity satisfied)

Using (3.5) and (3.6), it can be shown that

Ku - K S11 22
2 cos 2a S11 + $22

j k I - (3.8)
cos 2a 1 +

where = Rej 'd

S22

Si

= 1 e(2221 i

It is clear that in order for the equality in (3.8) to hold true

and therefore represent a physical case in which (Ku - K ) is a

real number, one needs

Re I - = 0, implying I - R 2 = 0 (3.9)

where Re stands for real part.

Thus for (3.8) to represent a physical situation, the condition

required is

R = s221 = 1, implying Is22  = lli

From electromagnetic scattering theory, it is known that the above

condition is attained at relatively high frequencies (i.e. physical

optics to geometrical optics region). It is interesting to note

that algebraic manipulation of (3.8) independently points out that
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it is a high frequency formula which is, of course, true since

the physical optics approximations for the scattered fields are

being used.

With the condition (3.9), now (3.8) can be written as

K u- Kk
u Kv tan( d/2) (3.10)2 cos 2a d

Where d = 422 - 11"

In the rest of the text, the above expression will be referred

to as the "phase-curvature" relationship.

For the inverse scattering applications a is an unknown

quantity (Figure 3.1). Thus, before (3.10) can be used to recover

the curvature difference at the specular point, ot needs to be

determined. For this purpose, consider

K - Ku V .

S2 1  2 sin 2aK - K
sll u v

(jk) u 2 cos 2a

from (3.5) and (3.7). Using (3.10), one obtains

$21 (tan 2a) (tan (d/2))

S 11 tan ( d /2) + j

1 -1 $21
tan - ' { S (I + j cot ( d/2)) } (3.11)

Once again for a to be a real angle (and therefore representing the

given physical situation) one needs

2 D ( - j cot (d /2))
S o d

.. . . .II I I I I I II I n ,.,1 1
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where D is a real number.

Using (3.11), without applying any unitary transformation,

the cross-polarized nulls of a given scattering matrix are known.

Two special cases of (3.10) are when a = 0, or 7/2 (i.e. the

incident linear polarization coincides with one of the directions of

the principal curvatures at the specular point). For these special

cases, there is no depolarization of the energy in the backscattered

direction (S21 = S12 = 0). The corresponding iS] matrix is referred

to as the cross-pol. null scattering matrix. The phase-curvature

relationship becomes

K u - K v 22 - 11Ku = + k tan 2 (3.12)

In chapter V, the validity of (3.12) will be numerically tested

with both theoretical and experimental scattering matrix data.

3.2 Numerical Analysis

In this section, a numerical analysis of applying the

phase-curvature relationship on the polarimetric scattering matrix

of a prolate spheroidal scatterer is presented, The 2:1 prolate

spheroid was used as a test case because of its well-defined finite

curvature difference at any point on the surface and also because

the theoretical as well as experimental data over a larqe range of

frequencies were readily available for this object. For the time

being, since both theoretical and experimental data are available

only for the special cases in which the incident polarization

coincides with one of the directions of the principal curvatures

at the specular points (i.e. points on the equator of the prolate
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spheroid (Figure 3.2)), equation (3.12) rather than the more general

phase-curvature relationship (3.10) is directly tested. In these

cases, the incident polarizations are along the vertical and horizontal

directions. To verify the theory of curvature recovery, it is essential

to check

(i) whether the right-hand side of (3.12) will approach the actual

value of (K - K )/2 for a given equatorial specular point asu v

k increases;

(ii) whether k Re { (I- )/(I + i) I will tend to zero despite that

k increases;

(iii) whether the imaginary part of k { (1 - )/(I + ) I will

settle to the constant value of (K K )/2;
u v

A more interesting and compact presentation of results is to

plot the right-hand side of (3.8) on a complex plane (i.e. the

imaginary part versus the real part of f k (1 - )/(l + ) 1. It

is predicted that this scattering chart will be a spiral which, as

frequency increases, will converge to (or hover around) a point on

the imaginary axis. The distance of this point on the imaginary

axis from the origin will be equal to the required value of (K -
U

K )/2 for the specular point of interest. It is expected that thisv

complex plane plot will be particularly useful when the input data

are not very accurate and are noisy (measurement data). In the above

tests, the exact value of the curvature difference K K has beenU V

calculated by using Minkowski's support function for ellipsoidal

surfaces [17]. Another way is through the use of differential

geometry (Appendix I). The value of k is normalized with respect
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P -- specular
point

Figure 3.2 Incidence for Equatorial Specular Point
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to the length of the semi-minor axis of the prolate spheroid.

It is useful to consider the following types of measurement

errors for the interpretation of the numerical results and the

explanation of the deviation from theoretical prediction given in

chapter V.

3.2.1 Relative Phase Error between TE and TM Incidences

If the target is not illuminated simultaneously with TE

(vertical) and TM (horizontal) polarizations, then even an offset

of one millimeter between the separate positions of the same antenna

along the direction of incidence will cause phase distortion of

about ten degrees to the phase difference (s v - I' h ) at a feunyo

4 GHz. If, however, the target is slightly displaced in the direction of

propagation with the TE and TM measurements simultaneously made, then both

vv and 'hh are distorted to the same extent. Thus the relative phase

difference and the subsequent calculations are not affected at all.

To investigate how the scattering chart is affected assuming

that a relative phase error of e radians does occur, the complex

ratio (0 - )/l + 'R") can be broken down into its real and imaginary

parts, with Pd replaced by&i)d + e).

Re I- 1 IR 2

I + De

im -2 sinD ( d + e)

1 + R

where De = 1 + R+ 2R cos (t d + e). Note that a spheroidal wave function

expansion could be used for error estimation.

It is obvious that the real part is much more resistant to
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changes caused by the error e than the imaginary part. Thus the

spiral will become a helix elongating mainly along the imaginary

axis and away from the exact value of (K -K )/P2. In Chapter V,

the relative phase error will be simulated within the set of

theoretical data.

3.2.2 Rotation of Target with respect to Incidence Direction

If the target is rotated with respect to the direction of

incidence (i.e. the incident polarizations are not along the

directions of principal curvatures), then it is the general

phase-curvature relationship (3.10) which should be tested instead.

Hence, a multiplicative factor of cos 2a (Figure 3.1) will account

for the sole effect of rotation error. The scattering chart will

retain its spiral shape however.

3.2.3 Canting

If the target is slightly canted with the z-axis still being

horizontal, then obviously the effect will be that which resulted from

changing the aspect angle (Figure 3.2).

3.3 Discussion of Second Order Corrections to the Physical

Optics Approximation

The first order correction to the physical optics approximation

due to Bennett et a] [8] has been shown to be proportional to the

difference in principal curvatures and to have the functional

form of the first derivative of the silhouette area of the target.

It might be expected that more geometry of the specular point can

be identified by extending the first order correction. For a general

case in which (K u- K v) is not zero, geometrical parameters, such as
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derivatives or mixed derivatives of principal curvatures, torsion

of the principal curves, etc., can appear in the second order

correction term. Another motivation in the pursuit of the second

order correction is the possible relaxing of the high frequency

restriction required for the validity of the first order correction

term. In order to elaborate on this conjecture, note that, since

d2A of the physical optics term corresponds to (jk)2A (k) in the
d!-2 FdA

frequency domain, and - of the first order correction term

corresponds to (jk)AF(k), there might be a trend that higher order

corrections become more dominant (important) for lower frequencies

within the high frequency realm of physical optics.

One approach to the problem of extension is to take into

account the higher order derivatives of r(u,v) that were truncated

in the first order correction. The first order term has been

obtained by retaining the second order derivatives of r with respect

to u and v. To obtain the second order correction term, the integrand

in (2.2) for J has been expanded with inclusion of the higher order

surface derivatives of r. After some algebraic manipulations, the

integrand was written as a sum of several terms like a , a r, ru vruu'

rvv, ... (up to the third order derivatives) multiplied by the powers

of Au and/or Av. This is expected since these vectors introduce the

higher order depolarization concepts. In contrast, the first order

correction term is in the directions of a and a explicitly.U V

The vectors such as r , r U etc. can be resolved in a , aruu ruv u' v

and a directions by introducing the Christoffel symbols through the
n

use of the Gauss and Weingarten equations in differential geometry
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[12,131. These Christoffel symbols depend on the basic geometric

parameters of the surface, namely, (E, F, G) and (L, M, N). All

terms in the a direction can be neglected on the basis ofn

physical considerations that the induced surface current cannot

have a component in the normal direction to the surface. The

appearance of the a term is due to the truncation of the Taylor series.n

The totality of all terms in the series should, in theory, nullify

the current component in the a direction. Since the depolarizationn

derivative vectors, and hence the Christoffel symbols, are all

evaluated at the specular point, they can be taken outside the

surface integral in (2.2), which then is written as a sum of

integrals of the type

(Au) 2  (Av) 4 dS

ff R) dS' ff A)j- .... etc.
E: R C R

For direct scattering problems the integration may yield complicated

analytic solutions despite the fact that S. is known. For inverse

scattering problems, where SE is unknown, the integration may be

approximated by assuming a flat patch for S,:. Since the Taylor

series dictated a small patch, leading edge effects and thus the

high frequency restrictions must be adhered to. An approximate

expression for JE can thus be obtained by choosing a circular

patch of very small radius E as the most simple case. However,0

the expression thus obtained has been found to have a factor of

E 03 in contrast to E in the first order correction. The relatively

small value of e3 compared with e renders the expression for the
0 O

second order correction current thus obtained insignificant. The
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far-field correction term corresponding to this second order

current term then has very little significance in comparision

to the physical optics or the first order term, and therefore

is of little consequence to most practical situations.

Nevertheless, it is suggested that one may assume some

simple known curved patch (instead of a flat patch), and take

into account the whole vicinity of the specular point rather

than only the point itself, in further pursuit of specular

geometry through the backscattered leading edge returns.
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CHAPTER IV

THE HF CURVATURE RECOVERY MODEL AND THE TRANSFORMATION INVARIANTS

OF THE SCATTERING MATRIX

4.1 Relation to the Transformation Invariants of [S]

The scattering matrix [S(A,B)J with respect to an orthogonal

basis (A,B) can be transformed to [S'(A',B')] with respect to another

orthogonal basis (A',B') through a unitary transformation [18,19,

20]. The transformation is invariant and satisfies [3,381

Span {[S(A,B)]} Span {[S'(A',B')]1 = invariant (4.1)

and Det {[S(A,B)]} = Det {[S'(A',B')]} = invariant (4.2)

where Det stands for the determinant of the scattering matrix and the

span is defined in the following.

Applying equations (3.5 - 3.7) for a basis (A,B) with

polarization angle a (Figure 3.1),

Srpan {[S(A,B)]1 IS AA1 2 + ISBB 2 + 2S AB 
2

K - K
1 2k2 2 u v 2

(~-k IAF(k)I jk 2 cos 2a I

(I2)2 k2 1A(k) 12Ijk + Ku v 2
2Tr AF 2 cos

+ 2(~) 2k2 A (I 2f K -K 2
+ 2(-) 2 Fk2 (k)12K u 2 v sin 2a] 2

1 22 2 2

2(--) k IAF(k) 1 k + [ v K 2 (4.3)

which is independent of a.

For a given frequency (high enough so that the theory is

valid) and a given aspect, the right-hand side of equation (4.3)

is indeed invariant.
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Similarly,

Det {[S(A,B)]} = AASBB - S AB2

) (jk) 2A(k){(jk) 2 Ku v] (Cos 2

K -K 2
s2)2} - 1 2 2A 2 sin__ 22

- 2 a) 2 (jk) (k)[ u 2 s 2
S1 22 2 v]K K 2

(_-)2 k A (k){k2 + [ U v } (4.4)

which is also invariant and independent of a.

Hence equations (4.3) and (4.4) are the high frequency versions

of the invariance equations (4.1) and (4.2).

4.2 The HF Scattering Ratio

It is interesting to define D (referred to as "the HF

scattering ratio'' in this thesis) as the ratio of Det {[S(A,B)]}

to Span {[S(A,B)]},

SAASBB SAB

ISAAI 2 + ISBBI + 21SAB12

AF2 (k)

21AF(k) j2

= 0.5 ej 26  (4.5)

where a = Arg AF(k) = the phase of AF(k) (4.6)

For the case in which incidence polarization is along one

of the directions of principal curvatures, IsABI equals zero. Let SAA be

ISAA Iej 'AA and so on, thus
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ISAAIISBBI ej(AA + 1B)

ISAA1
2  + ISBB

2

0- k AA + aB (.7

Thus = Arg A(k) =  2

and 1SAAI ISBBI I

ISAAI 2 + IsBBI2 =2 , which requires that ISAA1 = SBB i. This

condition is consistent with high frequency electromagnetic scattering.

Returning again to the general case in which ISABI 9 0,

SAAS BB - SAB 2 = IsAAIISBB ej(AA + 'BB) - ISABI 2 eJ 2 AB

= (IsAA 1ISBBICOs (AA + 1PBB) - SABI 2cos 2 AB)

+j(ISAAIISBBIsin (OAA + BB) - ISAB1 2sin 20AB)

Considering amplitude only,

ISAAI 2ISBB 12 - 2ISAAIISBBIISAB 12 cos ( AA+ BB-2 AB) + IsAB 4 }4

ISAA 12 + ISBB 12 + 2ISABI 2

2

The above equation is an identity, if

(i) IsAAI = iSBBI (4.8)

(ii) AA +  BB - 2 AB = 7
T (4.9)

simultaneously hold.

Again, (4.8) is consistent with high frequency scattering.

It should be noted that when (jk) is neglected compared to
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(jk)2 in (3.5) and (3.6) for high frequencies, both (4.8) and

particularly (4.9) result. Hence, in general,

[DI = 0.5 (4.10)

is not a trivial result merely from (4.8) as in the previous

special case, but rather a consequence of the first order correction

to physical optics.

4.3 Interpretation of the HF Phase Sum ( AA + BB)

From the above analysis, with only the phase being considered,

it is found that

tan 26 = tan 2(Arg A F(k))

Is AA1SBB1 sin ( -AA ' *BB) - ISAB 2  sin 2 AB

IsAA11SBB1 cos ( AA + cBB
)  - ISAB1 2  cos 2"AB

Assuming (4.8) and neglecting IsABI compared to IsAA1' the above

equation becomes (4.7), which is now also valid for the general

case. Its validity enables the phase sum ( AA + BB) to be inter-

preted as twice the argument of the Fourier transform of the

silhouettelarea of the target within the high frequency range.

4.4 Numerical Analysis

If the real and imaginary parts of D, the scattering ratio,

are plotted on a complex plane, a circle of radius 0.5 will be

expected for high frequency polarimetric data input. Since phase

changes rapidly with frequency, a circle rather than a cluster of

points of phases about 2 Arg AF(k) will appear. This, and a direct
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plot of IDO versus k will be shown in Chapter V. One significance 
of

these plots is to check the accuracy of experimental polarimetric data

of high frequencies by observing the deviation from the perimeter of

the circle of radius 0.5.

4.5 Transformation to Circular Polarization Basis Vectors

The orthonormal vectors along the horizontal and vertical

directions are usually chosen as the polarization bases (denoted

by (H,V)) for both the transmitting and the receiving systems. However,

a circular polarization basis pair may also be used [36,40], particularly

in radar meteorology, in which circular polarization has a particular

appropriateness on account of the direct correspondence between the

mean orientation angle and the relative phase of received circular

polarization components[29]. Circular polarization has also been utilized

in the backscatter measurements of dielectric spheroids [32,333. One

way to investigate the form which the phase-curvature relationship may

take in circular polarization basis is to transform [S(HV)] with respect

to the linear basis (H,V) to [C(RL)] with respect to a circular polarization

basis (R,L) [31,6,27]. Such transformation of [S] depends on the

specification of the transformation of (H,V) to (R,L) by a matrix [T(RL;HV)I:

[j=[T(RL;HV)I 4.1

where L and R denote the left-circular and right-circular polarization

vectors, respectively. The left-circular and right-circular senses are

defined in Figure 4.1. In general, the transformation of the linear basis

(H,V) to any other orthonormal basis (A,B) (not necessarily circular

polarization basis) through [T] must satisfy the normalization requirements
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H . = 1

V V = I

A A I 1

B B 1

and the orthogonality requirement

H V =0

A B =0

These requirements can be shown to be mathematically equivalent to

[T]*T = [TJ-1

which satisfies the definition of a unitary matrix. Hence IT] is a unitary

matrix, and its most general form can be written as [301

ej l cos 6 e j 2 sin

[T] = eJ3 sin e j 4 Cosj

with 2- 2 4 3. The most general basis (A,B) is an elliptic

one. When all phases are set to zero, [T] is just an ordinary rotational

matrix which rotates (HV) to another linear basis by an angle C,. An

example is given by the invariant transformation described by equations

(4.3) and (4.4), which shows from the curvature recovery model that

rotational transformation alone renders the invariants independent of

the polarization angle (Figure 3.1). A more general case can be given
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by, for instance, setting

= t/4

1  = 4)4 = 0

2= -3 = /2

The corresponding [T] then becomes

T] '(4.12)

and the corresponding (A,B) reduces to a circular polarization basis

By limiting the transformation from (H,V) to circular polarization

basis only, any polarization vector can then be expressed in terms

of either basis. For instance, the incident electric field polarization

vector Ei can be written as

Ei = E~ Ei]

i

where the linear phasor components EH' EV can be related to the

, i i . .. . . .. I I I II I II I I I " I .. . . .H '
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circular phasor components ER, EL as follows

E RE H

= [T(RL;HV) ] (4.13)

where the symbols * and I denote conjugation and transposition,

respectively. In (4.13), the incident polarization vector can be

regarded as being transformed in changing the polarization basis as speci-

fied by the unitary matrix [T] given by (4.11). The scattered

polarization vector E can similarly be transformed. E and Ecan

both be specified in terms of the circular polarization basis. Yet,

it is preferable to use distinct systems of unit vectors to specify

the incident and scattered fields, so that right-hand elliptical

polarization may have the same sense with regard to the coordinate

system for incident radiation as it does with regard to the coordinate

system for scattered radiation [30,7 (Figure 4.1). If (4.11) is prescribed for

the incident system, the desired similarity of sense for the two

coordinate systems can be accomplished by writing

= [T(RL;HV)]" (4.14)

for the scattered system. Because of the conjugation now introduced,

the relative phases in [T] are negated, and thus the sense of rotation

is reversed. Also, it follows that

Rs = [i
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rtarget

v(
/

scattered /

system /

/

0 Right-circular sense
w.r.t. scattered system

Right-circular
sense w.r.t.
incident system/

/ "? w.r.t.--- with respect to

H^
incident
system

Figure 4.1 Incident and Scattered Coordinate Systems
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On adopting this choice for the circular polarization basis of the

scattered field, (4.15) follows from (4.14), with the double conjugation

being ignored,

R H
:j = [T(L;HV)] (4.15)L -vl

in the same way (4.13) follows from (4.11).

In terms of the linear basis (H,V), the scattering matrix

[S(HV)] fully describes the scattered depolarized field, with the

incident field given, by

E HE H
= [S(HV)] (4.16)

E VLE V

Similarly, in terms of the circular basis (R,L), it follows that

- [C(RL) [ (4.17)

Using the definition of the unitary matrix, it follows from

(4.16), (4.17), (4.13) and (4.15) that

[C(RL)J = [T(RL;HV)j [S(HV)] [T(RL:HV)J T  (4.18)

which transforms [S] to [C] through [T] defined in (4.11), and which

is of the form of congruence transformation.
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4.6 Curvature Recovery from the Circular Polarization [C]

If the unitary matrix in (4.12) is adopted, then (4.18)

becomes

SHH - VV SHH + SVV

2 HV J -2

[C(RL)] (4.19)

SHH + SVV SVV - HH+
J 2 2 JSHV

provided that S SV, which is true for the monostatic reciprocal case
HV VH9

(also CRL = C LR). If conjugation in (4.14) is used to preserve

the similarity of sense in both the scattered and incident systems,

then an examination of (4.18) reveals that reciprocity is satisfied,

i.e. [C] Is symmetric(if [S] is symmetric). A different choice of [T]

may result in a different [C]. For instance,

if [T] 1 (4.12')

1 - -j

SHH - VV SHH S VV
2 + SHV 2

then [C] = (4.19')

SHH VV SHH -S VV

2 J HV

Returning to the [C] in (4.19), in view of (3.5) to (3.7),

the matrix elements can be written as
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K -K
C = - k A (k) U V [sin 2a + j cos 2ci] (4.20)

K - K

CLL = - k A F (k) u47 [sin 2a - j cos 2a] (4.21)

.1k2
C C =- j k 2 AF(k) (4.22)
LR R L J1 F

Hence,

u v - k2 CLL CRR (4.23)
2 - 2

CLR

which is an equation of curvature recovery from the scattering

matrix in circular polarization.

2
Expressing the ratio CLL C / C in terms of the linear

LLRR LR

polarization [S] elements,

(LL CRR (I )2 + 4(1 S H ) 2
= LCR sH (4.24)

C2 + )2
LR

Combining (4.23) and (4.24),

K-K CL CR
U v + jk { LL }RR1 (4.25)

CLR

+jk ( 2 (. (4.26)

( +(

Comparing (4.26) to (3.8), it can be observed that the unknown



40

polarization angle a in (3.8) is being disguised in (4.26) and appears

in the form of S Hv/SHH which is incorporated into the square root. Thus

one advantage of utilizing circular polarization over utilizing linear

polarization for curvature recovery is that the polarization angle

does not have to be determined, but still the entire scattering matrix

has to be measured.

It can be seen that for the case in which SHV = 0 (a = 0 or

90 degrees), (4.26) reduces to (3.8) and then (3.12). As in the

derivation of the phase-curvature relationship, the imaginary part

of the square root of CRR CLL / CRL 2 should give better curvature

difference and the real part should vanish, as frequency is increasing.

It is to be noted that under suitable conditions, quantities

such as the radar cross sections aRL, aRR, aLL and quantities derived

from them (e.g. (I - P)/(i + )) yield meaningful measurables in

measurements of the backscatter of dielectric spheroids and hydro-

meteors [32,33,34]; in radar target discrimination techniques, the

quantity ICRR11CLLI - ICRLI 2 in [36], in view of (4.20) to (4.22), can

be interpreted as [-(l/2,)2k 4 IAF(k)2], which reveals area information

for a smooth, convex, conducting target at high frequencies.

4.7 Transformation Invariants of the Scattering Matrix

The transformation of IS] to [C] due to transforming the linear

basis (H,V) to the circular basis (R,L) can be achieved by introducing

the appropriate relative phase between the two orthonormal vectors of

the (H,V) basis in addition to rotation. To investigate if the transformation

is still invariant in changing linear to circular bases, the Det of both

sides of (4.18) is taken
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Det {[CI} = Det {[T}1 Det {[S] Det {[T]T I

= Det {[T]} Det {[S]} Det {T]* -}

Det {[T]} 2
2= Det {[T]}l2 Det {[S]}

e [2Arg(Det{[T}) D S]) (4.27)

From the general form of [T] given on page 33,

Arg(Det {[T]) = I + 4 = 2 +  3

Hence,

Det {[CI} = e j2(p l + 4 Det {[SI) (4.28)

It can be easily proven that IDet {[T]} = 1 for the unitary matrix

[T], but it is generally not true that the determinant of a unitary

matrix is purely real. Thus, the determinant of [C] is strictly

invariant iff Det ([TI} is purely real, i.e.

Det {[T]} = ± 1 , (4.29)

otherwise the invariant differs only by a phase shift of 2( 1 + t4) .

For examples, the [T) given by (4.12) renders

CRR CLL - CRL 2 = SHH SVV - SHV 2  (4.30)

as is also evident from (4.19). The invariant value is the same as that

in (4.4) derived from the curvature recovery model, since the rotational

matrix possesses a real, unity determinant. On the other hand, the [T]

in (4 .12 ') will not preserve strict transformation invariance, as is also
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evident from (4.19') (i.e. the determinants of [C] and [S] are equal

in magnitude but of opposite sign).

To show from the curvature recovery model the invariance of

Span {[C]}, equations (4.20)-(4.22) and (3.5)-(3.7) can be used to give

Span {[C]} = ICRRI 2 + 1CLL1
2 + 21CRLI 2

= ISAA 12 + IsBB! 2 + 21SABI 2

= Span {[S]}

which equals the invariant value in (4.3).

It can be shown that the span is in general invariant, regardless

of whether (4.29) holds or not. Denoting the trace of a square matrix

(i.e. the sum of the diagonal elements) by Tr, it follows that

Span {[C]} = Tr {[C] [C]}

= Tr {[[T][S][T] T] *[[TJ[S][T] T] (from (4.18))

= Tr {[[T]*[S]*[S][T]T]}

[S] [S] is identified as the power scattering matrix [P] of [S]

[39,38], i.e.

[P] = [S] [S] (4.31)

Let [P'] be the power scattering matrix of [C], i.e.

[P' ] = [C]"[C] (4.32)

= [T]j*[S]*[S][T]T (4.33)

Hence,

Span {[C]} = Tr {[P']}
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= E P!.
i '9

= Z Pkl [ T* T ]}
k I I k i I

Since the set of conditions

IT111
2  + IT2 112  =

IT12 1
2  + IT22 1

2  = I

TT + T T =0
11 12 21 22

is equivalent to the definition of a unitary matrix, hence (after

some algebraic manipulation) it follows that

Span {[C]} = P11 + P22

Thus,

Span {[C]} = Tr {[P']} = Tr [P]} = Span {[S]} (4.34)

4.8 An Interpretation of the Scattering Ratio

The radar cross section art has been defined in [41] as follows

Crt = 1hr . [S t]h' 2 (4.35)

where ht is the transmitting polarization vector and hr is the antenna

height [20]. In this definition, h t and h are normalized to unity. It

has been shown in [20] that for radar systems that use identical transmitting

and receiving antennas, the radar cross section is maximum if

[S]h = h (4.36)
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where h denotes the antenna polarization which yields maximum power

reception, and A s denotes the complex eigenvalue of (4.36). Moreover,

the scattering matrix can be diagonalized by a change-of-basis unitary

transformation, using a unitary matrix which consists of the eigen-

vectors of (4.36) 20,42 . The diagonalized form of [S] is

where X sl and Xs2 are the eigenvalues, with IxS1 1 > IXs 21. The maximum

radar cross section is given by [20]

max= S2 (437)

The corresponding monostatic power scattering matrix is thus

diagonalized too :

[P di =[SdI [Sd] (from equation (4.31))

IX sl1 2  0

0 Ix s212

By the invariance properties of [S],

Span {[S]} = Span ([S d}

= SO 2 +  xs21 2 (4.38)

= Tr {[Pdi}

= Tr {[P]} (4.39)
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Assuming (4.29) for strict invariance,

Det {[S]} = Det [Sd]}

= sl s (4.40)
si s2

Therefore,

D Det {I[S}
Span {[S]}

l s 1  Is2 72 (4.41)

For high frequencies, it has been shown in this thesis that

D = 0 .5ej2 Arg AF(k) (4.42)

Comparing (4.41) and (4.42) and assuming that frequency is increasingly

high,

Ixsl ~2 (4.43)

and Arg Asl + Arg As2  2 Arg AF(k) (4.44)

Combining (4.37), (4.39), (4.41), (4.42) and (4.43),

Tr {[Pj = 2 a (4.45)max

for high frequencies.

Accordingly, [DI may be interpreted as the ratio of the maximum

radar cross section to the trace of the power scattering matrix.

The power scattering matrix has been defined by Graves in 139] and
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represents the total power backscattered from the target for any

transmitt ing polarization.

To conclude this chapter, it is to be noted that the invariant

transformation can of course be extended to the more general elliptic

case. The scattering ratio has tacitly been extended in its definition

to the general elliptic polarization in Section 4.8. Equations (4.7)

and (4.10) which describe the behavior of the scattering ratio are

thus generalized.
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CHAPTER V

NUMERICAL VERIFICATION

5.1 Data Description

Both theoretical and experimental data are available to verify

the special case of the phase-curvature reiationship (3.12), i.e.

the case in which the incident polarization coincides with one of

the directions of the principal curvatures at specular points on

the equator of the prolate spheroid. [he theoretical data was obtained

by a time-domain synthesis of the impulse response technique [15].

rhe solutions generated by this technique were checked against

other theoretical solutions [8,16] with excellent agreement [15].

ihe theoretical data were converted in the form of amplitudes and

phases of the elements of the scattering matrix. The experimental

data were measured at the Electro-Science Laboratory of the Ohio

State University (ESL-OSU). The experiments were conducted [28] on a

frequency-domain range yielding the backscattered returns SVV and

SHH (S and S VH being zero in this case). The 'size' of the prolate

spheroid used in the experiment was 6 inch : 12 inch, and the data

were measured for two principal polarization cases in which a = 0

(VV or TE) and a = 7/2 (HH or TM) for aspect angles from 0 (nose-on)

to SO degrees (broad-side on) in steps of 15 degrees (Figure 3.2).

After measurement, the data were smoothed. Two of the smoothed

frequency-domain data blocks, namely, the 2-4 GHz block and the

4-8 GHz block, were used in this thesis, covering a range of 3.19

to 12.76 in terms of the values of kb (2,/\ .b). The error bounds
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on the experimental data were specified to be + 2 d8 in magnitude

and + 1U degrees in phase data.

5.2 Direct Verification of the Phase-Curvature Relationship

5.2.1 Theoretical Data

A typical result obtained with the theoretical test data is

presented in Figure 5.1. In Figure 5.1(a), the right-hand side of

(3.12) is plotted against kb (in steps of 0.1 from 0.1 to 18). From

this graph It is clear that as frequency increases, the phase-

curvature relationship becomes more accurate. The aspect angle is

90 degrees (broadside incidence), and the corresponding curvature

difference divided by two is 0.375, to which the right-hand side

of (3.12) converges. In Figure 5.1(b), the real part of (1 - k)/(I +

multiplied with k approaches zero. Although not presented in this

thesis, the real part itself (without the factor k) converges to

zero at a much faster rate, particularly at large values of k. In

Figure 5.1(c), the imaginary part multiplied with k tends to the

value 0.375. The scattering chart (imaginary part versus real part)

is shown in Figure 5.1(d). As predicted, the plot is indeed a

spiral which, as k is increased, converges to the point (0, -0.375)

on the imaginary axis.

5.2.2 Experimental Data

An extensive amount of testing of the phase-curvature relation-

ship has been conducted with the experimental input data. It was

realized that because of the nature of the tangent function, a direct
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test of (3.12) with input data which have a *10 degree error in

phase measurement, is not very useful in a graphical presentation.

Thus the complex plane plots of some typical measurement data are

presented in Figures 5.2 to 5.4.

The plots in Figure 5.2(a)(i) to (iii) are the experimental

versions of the theoretical plots in Figures 5.1(d), (b) and (c).

Figures 5.2(a)(i) does indeed hover around the predicted point on

the imaginary axis. This behavior is not so clearly visible in Figure

5.2(b)(i), where according to the theoretical predictions this plot

should have given better results for the higher frequency range.

This discrepancy is mainly attributed to the following factor

the phase error magnified through the tangent function gets even

more magnified through the multiplication with large values of k.

The plots shown in Figures 5.3(a) and (b) are for the nose-on

incidence case (~=0) for which there is no polarization

dependence and (K u K K )/2 vanishes. Figure 5.3(b) is of the 4-8

GHz block. The case presented in Figures 5.4(a) and (b) are for

'p = 45 degrees, which is representative of a typical aspect. Once

again, the results for the 4-8 GHz block arc not as good as the

2-4 Gliz block.

It is to be noted that the relative phase error mentioned in

Chapter IV becomes significant at high frequencies. Figure 5.5 shows

the effects of an error of 0.5 millimeters between the TE and the

TM antenna positions along the direction of propagation. The error

is simulated within the theoretical data. The scattering chart of
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Figure 5.1(d) now changes from a spiral to a helix elongating mainly

along the imaginary axis and away from the exact value of (K u- K v)/2.

if the error is negative, the helix elongates in the opposite direction.

An observation of the scattering charts of the 4-8 GHz block reveals

that the plots somewhat look like a helix rather than a spiral. Thus,

the relative phase error partially explains that, for the 4-8 GHz

data, the scattering chart deviates more from theoretical prediction

than for the 2-4 GHz data. It is to be noted that in the 4-8 GHz block,

there were many data points for which accurate results were found. In

general, all the experimental tests and the theoretical data supported

the approximate phase-curvature relationship well.

5.3 Verification of the Scattering Ratio D

5.3.1 Theoretical Data

A complex plot of D (imaginary part versus real part) with the

theoretical data as input is depicted in Figure 5.6(a). For high

frequencies, the phase of 0, in theory, converges to a constant

value of 2 Arg A F(k). However, a circle rather than a cluster of

points of phases around 2 Arg A F(k) results. This is due to the fact

that the phase fluctuates rapidly at frequencies not high enough.

Even the range of frequencies covered by the set of theoretical data

(kb up to 18) is not sufficiently high to show the convergence. As

predicted, the radius of the circle is indeed 0.5. In Figure 5.6(b),

only-_the amplitude of D is plotted versus kb. Clearly, the amplitude

converges to 0.5 even at low values of k, in contrast to the behavior
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of the phase of D.

5.3.2 Experimental Data

Figures 5.7 to 5.12 are the experimental versions of Figure

5.6. Figures 5.7 to 5.9 cover the frequency range from 2 to 4 GHz,

with aspect angles being 90, 0 and 45 degrees respectively, whereas

the rest cover the frequency range from 4 to 8 GHz. All the complex

plots of D depict an envelope circle of radius 0.5. The nearer the

data points to this envelope, the more accurate they are (for high

values of kb).

It is interesting to observe that both Figure 5.12 and 5.4(b)

show that the data block of 4-8 GHz of 45 degree aspect is least

accurate among the experimental data blocks.

. . .I I . . .. . . . I I I I I I . . I I I I ' ~~
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CHAPTER VI

CONCLUSION

In the high frequency limits, the phase terms of the polarimetric

scattering data have been used to determine the difference between

the principal curvatures at the specular point. It is also known

that the geometric optics backscattered cross-section is related to

the geometric mean of the principal curvatures at the specular point

(for smooth, convex objects at least [6) Therefore, it should be

possible to combine the above two concepts and determine the values

of the individual principal curvature at the specular point. Further,

by judicious use of differential geometry (e.g. Minkowski's formulation

or Christoffel-Hurwitz formulation, etc.), these curvature values

may yield the actual profile of the scatterer.

It must be pointed out here that the phase-curvature relationship

concept does require a smooth, convex, well-behaved surface structure.

if there are edge or other singular types of source contributions to

the backscattered signal, curvature recovery with the method of this

thesis will not bo accurate. However, in the most recent development

of radar target discrimination [5] the relative phase difference of

the like polarized elements has been found to provide one of the

most important classifiers for discriminating a smoothly (undulating)

curved surface from a discontinuously rough surface with sharp edges.

It is found that there are several probable reasons why the 2-4

GHz experimental data give more accurate results than the 4-8 GHz data.
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They are the tangent function in (3.10), the k factor and the relative

phase error, which all become more significant at higher frequencies.

Thus, the phase measurement needs to be very accurate and more

accurate methods of obtaining the complete broadband polarimetrid

scattering data should be investigated.

It seems that not only is the 2-4 GHz range valid for the

first order correction to physical optics for a 6"x12" prolate spheroid,

but it is also a compromise range between the high frequency condition

required by the curvature recovery model and the drawback to lower

frequencies required to prevent critical magnification of measurement

errors. At too high a-frequency, the product of k and the tangent

function will lead to erroneous results from measurement data.

Although the curvature recovery model is restricted to

conducting scatterers, it may be possible to extend the model to

dielectric scatterers, since the space-time integral equation, on

which the model is based, has recently been extended and applied

to dielectric bodies by Mieras and Bennett [37].

In concluding, both the amplitude difference and the phase

difference of like-polarized elements of the scattering matrix in

linear polarization tend to zero at high frequencies, yet the phase

difference, however small, does contain curvature information of

the scatterer. Regardless of the type of orthogonal polarizat ion

bases, the phase sum tends to a constant value which is twice the

argument of the Fourier transform of the silhouette area of the

target. The phase sum also tends to or equals the argument of the

scattering ratio defined in this thesis. The magnitude of the
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scattering ratio, whose definition is independent of whether linear,

circular or general elliptic polarization is used, approaches 0.5

rapidly as frequency is increased. The magnitude of the ratio is

interpreted as the ratio of the maximum radar cross section to the

trace of the power scattering matrix. The complex plots of the scattering

ratio provide a simple check on the accuracy of high frequency

polarimetric measurements. Another curvature recovery equation has

been derived in circular polarization basis vector notation. The

curvature recovery model is proven to satisfy the image reconstruction

identities of invariant transformation. Finally, the values of kb

from 3.19 to 6.38 have been found to be most potentially suitable

for curvature recovery of the 6 ''x12" prolate spheroid (and probably

targets of similar size and shape), provided that polarimetric

measurements can be improved to a better accuracy, and that further

correction to physical optics approximation can be obtained.
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APPENDIX I

DERIVATIONS OF EXPRESSIONS FOR PRINCIPAL CURVATURES FOR PROLATE SPHEROIDS

Let the semi-major axis of the prolate spheroid be C, and the

semi-minor axes be a and b, such that C > a = b.

Let r(u,v) be a curvilinear mapping to represent the surface

of the prolate spheroid. A set of parametric equations are

x = a sin u cos v

y = b sin u cos v

z = C cos u

In vector form,

r = (a sin u cos v) i + (b sin u sin v) j + (C cos u) k

ar= (a cos u cos v, b cos u sin v, -C sin u)
3u

(-a sin u sin v, b sin u cos v, 0)

By definition,

ar DrE=Tu".~

2 2 C2 2

a cos u + sin 2u

ar ar
G = av v

2 .2
= a sin u

ar 3r
au ,v

-0
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F = 0 implies that the u, v parametric curves are orthogonal

to each other.

Let n be the unit vector normal to the surface.

r -,r / r )r
'u 'V ,U T I

(bCsin u cos v, aCsin u sin v, absin u cos u)
, 2C2 s 4 2 2 2 4 2 2b2 2 2b sin u cos v + sin u sin v + b sin u cos u}

2-
= (-a sin u cos v, -b sin u sin v, -C cos u)

'U

2-

r (-a sin u cos v, -b sin u sin v, 0)

2
2 r -aC
2 2 2 2 2

'u sin u + a cosu}

2- 2
r aCsin u
2 2 2 2 2

Iv ,C sin u + a cos u}

-- = (-a cos u sin v, b cos u cos v, 0)

Jr
n.3v~u

By definition,

2
3rL = n . . _r

3u 
2

- aC
2 2 2 2

,'(a cos U + C sin ul

I r
M=n

= 0
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ar
N n .

av
2

- aCsin 2 u2 2 U c
V{a2cos 2u + C2sin 2u}

M = F = 0 implies that the lines of curvatures are the u, v

parametric curves chosen. Thus,

K Lu E

- aC

2 Cos2u + C2sin2u)3/2

K M
v G

-C

a/{a 2cos 2 u + C2sin 2u}

and the Gaussian curvature

K=K K
u v

+2x + + z 2
a T- -T -Ta a C

In terms of x, y and z,

Ku C2 C2 -2 aC 2  2 3/2
U x 2 C 2 a 2]

a a C

v 2 2 2 1/2
v C 2 C2  2 a 2

a a C

Without loss of generality, consider the x-z plane:
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The point P(x,z) with an aspect angle q , as shown in Figure

A(1), can be expressed in terms of 4', by solving

x - z tan

and 2 2
2 

2
a C

Thus,

aC
Z 2 2 2-
/{C tan24 + a2}

aC tan 4

/{C 2tan 2 + a 2

Consequently,

- aC

u [Ctan +a

C tan24 + a

- C

v aVrfC 4tan 2 + a

C tan24 + a

For a 2:1 prolate spheroid, C 2a. As an example, suppose

= 90 degrees, hence

K -=Ku =-

K 1~
v a

K K
u v 3

2



Figure A(l) Geometry of Prolate Spheroid for Curvature Calculation
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Since k, the wave number has 
been normalized in the

phase-curvature relationship, a is set to unity here in conformity.

Thus,

K -K ru v = 0.375
2

for broadside incidence.

Other values of curvature difference can be similarly

evaluated once the aspect angle @ is specified.
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APPENDIX 11

COMPUTER PROGRAMS

(a) for computing curvature difference and plotting Figure 5.1(a)

(b) for plotting the scattering charts with theoretical and
experimental data

(c) for plotting the scattering ratio D



1 01

AELE4SE 2.0 MA4IN DATE a 82134 10/45/20

C THEORETICAL VEQcIFICATIOlN, 04TA FPCM V909THEORYoDATA
C AND m90.TmEORY.DATA
C HIGH FREQUENCY PHASE/CURVATURE RELATIONSHIP VERIFICATION
C FILEN'E CURV.THEORY.CNTL
C N =NO. CF FREQUENCIES OR DATA
C FOP DRCLATE SPHEROID* Az2B=2C
C ASPECT = PHI

CIMENSION PHIV(180)9 PHIH(IS0)o RI45(182)
REAL K((182), KO9KS
C= I.
B=c
A 2.0*C

KS =0 *
P!=4*0*ATAN(1 .0)
THI:)EG=90*
THI=THI DEGS (P1/I8O o)
PHIOEG=90o
PHI=PHIDEG*( PI/'Ieo)
READ (8.15) (PHIV(!). !=1.N)
RZAD (9915) (PHIH(I)., Iu1.N)

15 F~ioRATt 3(1OX.FI~o3))
PRINT I

I FOF'4&T(90o'.10K 'PHI V'. 36X9 '4HIHS. a IN RAC')
00 3 11.oN

3 DRINT 49 PH!V(I)s PHIH(I)
4 FORM4AT(9309 Iox. 91093. 30K. F1093)

ZT=SrN(THI )*CCS(PHI)
ET=SIN( THI )*SIN(PHII
AKCCS( THI)

elBIS N( PHI) *SIN( PHI )4 * A*COS (PHI) *COS (PHI)
C1=I A*A-c3*3)*SIN(PHI ).COSPHI
OL=A*A.SIN(PHI)*SIN(PHI )eB*B*COS(PHI)*COS(PhI )
GI =A*AwB*B/9I
9-=I*C M(81*81 )-D 1/81
TAU=ABS(A*A*8S*U*11*SIN(THI)*SIN(THI )/(CI*C1-BL9Ol)-C*C*COS(THI

I )*COS(THZ 3)
T AU=S OTCT AU I
HI=AOS( Hi)
GG=G1*C/(4*S0RT(HI))
GG GG/ ( T AU*03 )
P=S0RT( A*A*ZT*ZT+18*B*ET*E T+C*C*AK*AK)
012= ( (A*ZT )**2 )*( 3*B3-C*C )+( (a*ET )e62)*( A*A-C*C) )**2

D12=!12-((6*ET)**4)*((A*A-C*C)**2)-2*((A*ZT)**2)*((C*AK)**2)*(A*A-(
I e*s))* (B*B-C*C )
0I2=SlRT(DI2)*P'(( A*B*C)**2)
C I 2=01 2*6/2 .
PRINT 99. 012

Q() FOPMAT('00' 0 EXACT CURVATURE DIFFERENCE BY 2 IS as FIO.6)
PRINT 5

5 FORMAT('* 80 , ' X NORMALIZED K9 o 30X, ICURVATLIRE DIFFERENCE BY 2 FR
CC14 PHASE')
00 6 1219N
K(I)zK04II-1)*KS
AFG= (PH IM( ) - PHI VtI ))J/2.
RHS( I )K(I )*TAN(ARG)

6 CONTINUE
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00 7 Ill.N
7PINT So K(I), RHS(Il

8 F:P'%4kT('08. 10X, FQe29 30K. FlS.6)
PRINT 9, P94IDEG

9 FORMAT('ODS DTHE ASPECT ANGLE HAS aEEN F. *6£ DEG@)
PRINT 12. THIDEG

12 F.)R44T( 900*.'NGLE 1141X 9IFIO.69 $DIEGO I
PRINT 10. KO. KS

10 FORM4T('O'.'STARTING NORM K = *.F1O.59 I. STEP- I. F10*5)
CALL CIGNPLT( 59CURV41
CALL SCALE(K9IZ.O9LI909l)
CALL SCALE(:tHSp02o0 *80 91
CALL AX ISCO 090 o.o NOR' K 4 -6 912a.Oe 0.0.K( 181 ) sK(LSZ)
CALL AXIS(0.0.0.ORHS.38.0.90O.RHS(181),rNHS(1S2))
CALL LINEfK.r-HSv1S0.1rl.4)
PRINT 2221.K(1Sl).K(182).RNSLI81).RNS(182)

2221 FORM AT ( &0 4 4F15.o!)
CALL ENDPLT

'222 FORMAT( 909 9414*6)
STOQP
END

TF=EC * NOTER 4.I0oESCD COS OUPCENO. IS TNODECK LOADvN3MAkP NCTS ST
MFFCCT* NAME = MAIN *LINECNT so5

Slor-CE STATEM4ENTS z7O.PQ3GRAM SIZE 5908
NC ')I&GKG.STICS GENERATED
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f-i-FrA-.E 2.of) 14414 DATE 823 10/153/34

fA'JfnHLJ11S SCATTE4ING CHART
CFtLE %A'4E::::........* KCAqT .THF')RY.CNTL

C )ArA TO~ 9E .4EAO F'414 V90oTH*4PPV.ATA AND H909T4CPY&DAT4
f: j '41. CF Fr.FauFN IES IR DATA
C 'L r E SPmf o I c

KO= I. I
K~ -3=~ 0 9

TN! JEG=')I.

rK:Ar)( 3d )(AMO'VCL) .- '-.z1VCI) * 13N)

A( II A Q. V/-'I

(: CT I NUC *1'U

"-UN'T I
.1 F C4 4A T( ' V 9 'NC I AALI !ED I<' .1 )X 'CAL' ll QE *I I 081r 'AOVO'l 2?5X 9 * oc%
':I )Xt 'PKI'lAW,

4 --lit'IT So K( I)o ?P~( Z~s 1'3( 1)* KPDC I)* IY'ff

C ALL J,.;4PL T( , :-AR r )
jl IlI') 3'ALE F04 %,'. I 4AG 1NARY-PFAL CLJSTFI PLOTS '111 'JSZ)

1: 1 'LTQ r-AVE N4- J-1IIED SCALE
T f;'uv JNIPIE') 3:ALFE FICR 1"Ar3..PEAL CLUI;T'Q OLrrTS,
JisT )FLETE TH-E IC~.C1d FnPPTQAN STATE"IAENTS9
ao J',! () 1iri45Eva SCALF% 45 F:LLCwS:
CALL 3~E~.I)1)l

t 5 1 ~-2 1

KI r-( I )=.
C ALL A / I'j( e1 94.)'<RE AL - 98 )of) lqVQ (l 1 9K"'v I .'))
CAL- AXI -3(4.'39 ).Is OKIVAA %- l~e ).IO,9I(I (1i I )KIP( Iq2))

1: ALLI L aJ PL T
(-ALL Ma,:4rLT(5, AEALor)
CALL if-ALFC(. I .O. 1!O. )
CALL SCALF-iK:4.2.'),l9 .2.)
CALL AX13(093) )').'40P4 KlA-6qj2.o.').oqK(I)sK(I921)
CALL A~SO~,ooKFqt**00KPIl*'P11)
CALL LINEC(.'13191O4)
CALL E N) r3LT
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C ALL fjt.N PL T(4,A)
CALL 3CALE(Kv12!"h1O.1
CALL SCALE(K.I0,i.OL8O,1)
CALL AXISVoooJ.oooNapm K'.o-f~t2OOofle(181S).K(192) )

CALL LINE(Ir.Kl2* 3*90
CALL ENDPLT
011 NT 5-33, T H IJ --

,to3 crQATP,0@9 'AN.JLI THM!= *,F83 *0UrPFS
rj~l% 555. P 4 1 1

5 FUR 4AT C 009 1TH4 Ai3ECT ANGLE = 'Fe. 19 DOr(PS*)

PPINT 9ql
Ij' FORMAT( 1 )09 *ri- JRI GINAL V'ERTICAL --CLAP IZATI 004 CATAI

?f'!INT 992, (A'4'V( Z).q'IV(1 I) !1A)
'#I2 !rIQ'4AT( 0 00 1 OF10.3)

:)RtNT Q93
03 $rrCPZ4AT( 0Of I T,4-: ORIGINAL Hr!rNjTAL r-%nLAql ZATION ')ATA:)

' 1 T ('j'4 84,0A"--( 1) .PHII'( I ) 9 11 ON)

.T -10

i -,F-CT* ';AV-- = 4AIN v LV4ECNT C5
S')WRCt ;TATEM'ENTS 69#0R(GRA'4 SIZE = 10736
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r LEASC~ ?.O DAI ATE 82 2134 11/02/31

C CHAUDMUPIOS SCAITE411G CHART
:r[LE NA"9E::......: : :ICIOART*CNTL

C N = NC. CF FREQUENCIES J3R DATA
C '.CLTE SPHEROICl

r)MESC A40VC2O03)9 AW04NC00)9 PHIV(200)9 P~r4(7V)
PEAL K(202)9 R3(2)2)9 10(20?1. (P(202). KIP(20?)
CJMOLEX CJ. C42-Xo CFP* PNUM. RDEN, 0 (200)
N=J )O
C %=3.

I =c

ATN=2.*C IN

SzO. 01

I I 4* A TAN (I.*)
T Pt')E a=-20
OHI )EG90.

R A'(9s 1 )(AW3H( 1 )90414( 1).9 1=1 * N)

A F~ C * *( A A4' T- ( I) OF 10 ))o

:'?,E'=1.4AM4*CEX2I(CJ*'Dt)FF)
FMI =RNUMJ/RDEN
PC( I)RAC L

2 coNTiNUc
OQ1NT 3

3 F'R4Ar('0'*,-';MALI,!Fr) K.10X,"EAL',1gXt'AVINA!:Ye.25X* OKC=ALfs
Clgx. GKIMAGI)
DO 4 = .

4 ORINT 5. K( I)t 4 P( ), !I([ )* KqP( I). K1( 11
Is Ff-4AAT('3' .F1.3.ZI2X.F*75C.F14.7, I3XFl4o7.I5~.Fl4.7)

CALL 3G1JPLT(59 ZHAkT)
i- J'tjFjt) SCAL.E FOR AL-L IMAGINARY-OPAL CLU-jT- PLE9 TS NtOW IJSED
j. 4.THE4 OLL7S MAVE \0 UNIFI'ED SCALE
C rC ,RE'4!VE U'41F!Ir 3ALE FCR T'4AG-REAL CLUSrER O3LCTS9
C J'JST ZEL...TE T4AE FC'L'...OING 4 FORTqAN STATEWl'NTS9
C ANO INSF-7T 2 JIF( rINE 5CALF', AS F-ILLC4#S
C: :ALL SCALE('KQ"q.3!3a.I)
C CALL SCALE(K.1090e.'.2O191)

g(.RP(2a )z-8.0

K IP( 202)2-.0

CALL AX1SI0.3.4.0,.KPEAL-5R.000K"(2'l),K'P(202))
CALL AXIS(A.*.).3.*e$I(IAGS ,3.8.0990.0KIP(201),KIP( 02))
CALL LINE(KRP*<l.2C'.t*0.4)
CALL ENDPLT
CALL OGNPLT(6* 4EALOT)
C ALL SCALE(K(.1?oO*200, 1)

CALL SCA LE (K(R 0 93 o 200 9 1
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CALL AXIS(O. ,).*.OP~ ~lA-.to9O.O,K(2OI).KR(2)l2)I
CALL AXS(
CALL L INE(K K479200.1.-I, 41
CALL t: W)PL T
rALL 43GNOLT(49 IMAG)
CALL SCALE('(. I .0.20.1)
CALL SCALE(KI;)93.a00. 1)
CALL AXIS( 3.0)-3# "@,ORM *l-bI2.O.OotPK(201).K((?'))
CALL AI(..)~ Jq '9O00K~2) K~ ''
CALL LINE(I(.<1092a0. 3.-I.)
CALL ENDaLT
P914~T 5. CINoAIN 

N3t FUJR4AT ('10 9 1P -4:, A TE SPHE10 V) !C 'F7 .3 9 A= F7.. *:19 0
9P I 1T 553. THIM);

:53 FORMdAT(f' 1 ()0L0 THI =0 F13. 3 r )E~c'FE SO
PRINT 555. '411EG

~5 FCR-4*AT( 9 O . ITHE A 1'ECT *NGLO = F.F. ' I OFCqF5S 0
PRINT 5569 FOS*

PRINT 091
- c.1 FOI*AAT(O0'. T-: JR IGIN AL V EIT IC AL P rL %Q 1ZA T I'IN C A T A

OqINT 943
3 F 0R A A r o5 ss *T I -3 G fIN AL WM1IZUKTAL PlLAQI7ATIrlN 'ATA:')

3RJ NT 9949 AV '1-( 1 ) .041"9( 1).* 1=1.1 j)

F,',

EFFECT* NLE*oIDEI:[: ~.RE9O T94DCK*ODNIA9NTS
EFFtCT* NAmIE = AIN * LINECNT = c;0

* SQL1I4CE STATEM4ENTS = 76.PqOGRAM SIZE I I C 10
*NJ JIA,1NCSTICS G~fIFrQArE&



-Z-LEASE 2.0 *4 414 flATF A 2134 I 10/,,'I

C VLC IS 3CATrERING PIATIO
C rlLF 'YA4E:::::::..: :RATtloTHE-IRY.CNTL
C JATA ro riE READ FqCh4 Vq0.T4-EfRV.OATA AND M90oT'IECRYeDATA
C Pi NO. Cfg FPEOUENCIES OR rlATA
C .N'LAfF sPHE~n10

CitmENSIuO4 AMP2V(LSJJ, A"6Po4(143)v 01HIV(I10)o PN!N(19e))

Crn4PLtEX CJ* CW''L2C C-EXP. RNtJM, Rfllio RATftr(1It3)
N=1 110

CJ=CAPXO~ 1*.

PI=4.*ATAN( I *)

PH1I3E,;=40

I F'3R4AT(6Fl0.6)
PRINT 388

i,'d F(qmAT(*00.NC~vLJZFD K' 3*RAoo*MrNq~too,"'g
C*14X**AAPLfTUJ=I')

'-(1 3=K,3*( 1-1I *3
r.NUoA\mPHC I *CZ<(CJ*PH N( I )A4PV I)*CgFx( CJ*P41v(!I
-,)ElAA.3-I4 1 *0 ! %V4')V( r ) *?
-ATI CC I )=PNU%4/Il)EN'

7 i4 I )=Al V AG( P ATIO I4

T AN= IPC(I ) /PP (I)
PHASEAI)=%.rAK(rANl

PRIN 1 QK 4) T ~ 44Q 9 ~ K ( IMSE Po ~~
2 CCNTINLiE

CALL v3i'PLT(5 .4 TIC)

[ptI 12)=0.25

CALL AXI S(-%.3. is3.*' AG.*91.O. 0.0. tr(181 ).I"(tlq'?)
C ALL L [if-' (RP 9 t 0. 1 R * I1 1 *4)
CALL EPNL),LT
CALL d -J4PL T (1 1AT)
AvP(Id )=0.0
A ivP( 182)=0. 5
K( I1-$ 3=O.O
K 41A2 3 2.
C ALL AX IS( 3 ).*1"IRM K I -i 9F1 0 9tl (, K((IRl ) 9Kf 1 ))
C ALL AXI1S(C0 119 aJ 1A,4L TU.09 2 *09'30) 0 9AM( I )A 440f 11))
CALL LlNE(K*AlJP*.IA0, .394)
CALL ENOPLT
',PINT sj3q T.4I3ZG

~,3F" A(0 5ALE TH I =' 9F9 o3, * E ES
PRtT 5559 'NIJ[)G

; ,5 FCRMAT(100'.*THI ASPECT ANGLI = IoF4*YqI 'FG#RFFSI)
PRINT 556. K0*4E

'j~ FqA4AT('00STA4TNG N01V~ALIZED K =9FIO.590 STSO0,Fl0*51
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441 F*R 4A ISO*. T-46 JRIGtNAL VI:MTtCAL. OCLARIZATION OATA:*I
ORINT 992. (AA4PV( I) .AMV( r 9 =. NJ

~2 FOR4AT(90* 1O910e3l
PltNT 94.3
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T;4EORETICAL DATA

(obtained from Dr. Sujeet Kumar Chaudhuri,

Department of Electrical Engineering,

University of Waterloo,

Waterloo, Ontario,

Canada, 1981)



110

C

I- 0 -

LfU

z
Z 2

*L Z

00
O



04 41, 1" In f N 0 . @1 i 0 a 0 04 0 i N si In a W; on ey .0 W

* . a IN * . * . .a in r .to u a 0 . .* a o . .
0O - $I. -I : " N 0 a N a0- O &0 m N 0

Ir In 0 INIi In I u AS " V. I a . In

40 -4 C W 0 aI aM AON - -N N TO 7 IN N

00000~~~ MO NN Wi m i M I 0 0 0 0 N NNN NN W i

* * .. . . * . . . . I. I. . I. . . . . 9 9 9 9 . . . . . .

PM P. 0 a N 0 N N. 0N vC C 0 Nl 0 C
-. -. I I.I I i

Wi ~ ~ 1 7 O M 0 0 O N N 

WI 0- 00 O 00 00 000a0 00a0 00

O 0 1.Wi O I N M I 0 W N M - .N CO
N ~ f NO M04 O N E E N W *0 V~ N t. 4 04 44

*~~~ ~ .. . . . . . 0 0 a . 0 a

91 0 I 3N I 34 19Ic In a m IV (v IV a I

4 ~ 0 7~ ~ 0 0 NM MN m 9 ' 40 0 Q 0 -O .t a 'a

0 ~ ~ IN Wi mO a0 A i W0 N N O 04N 0 -



112

Cy Ny cy fu N N -0 - NN - @ N0 NM N ~0

It~~ 
NC b

ME N M0 NM NO 0 4 C 9 4 4 A EM 6 N 

0 -0 N - 0- N 0 - MN M N X N10

0 a M ml N t 4 Eym N a04--E NE N4 aI 6 00 - N

2e o - - - o- o---- 0 ao 0 a -0 0 0

A.4 N 4 . 0 A.A.A. CON MM 4 O'M M- n 4 d



113

0 t I q I I II a

I I I I I I

I l l o v a a W

*. .. .. 9 • . .

- C - -'0 - C 0 - 0

I I I I I I

*. .. . . 9 ' . 9 9

I- 0 - 11 1-1-110 - 0,....0



114
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(obtained from Dr. Jonathan D. Young,

Electro-Science Laboratory,

Department of Electrical Engineering,

Ohio State University,
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